Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the NADP-malic enzymes in the woody plant Populus trichocarpa.

Identifieur interne : 002763 ( Main/Exploration ); précédent : 002762; suivant : 002764

Characterization of the NADP-malic enzymes in the woody plant Populus trichocarpa.

Auteurs : Qiguo Yu [République populaire de Chine] ; Jinwen Liu ; Zhifeng Wang ; Jiefei Nai ; Mengyan Lü ; Xiying Zhou ; Yuxiang Cheng

Source :

RBID : pubmed:23096088

Descripteurs français

English descriptors

Abstract

Plant NADP-malic enzyme (NADP-ME, EC 1.1.1.40) participates in a large number of metabolic pathways, but little is known about the NADP-ME family in woody plants or trees. Here, we characterized the tree Populus trichocarpa NADP-ME (PtNADP-ME) family and the properties of the family members. Five NADP-ME genes (PtNADP-ME1-PtNADP-ME5) were found in the genome of Populus. Semi-quantitative RT-PCR analysis show that the transcription levels of PtNADP-ME1 in lignified stems and roots are clearly higher than in other tissues, and PtNADP-ME2, PtNADP-ME3, PtNADP-ME4 and PtNADP-ME5 are broadly expressed in various tissues. PtNADP-ME gene expression was found to respond to salt and osmotic stresses, and NaCl salts upregulated the transcripts of putative plastidic ones (PtNADP-ME4 and PtNADP-ME5) significantly. Further, the NADP-ME activities of Populus seedlings increased at least two-fold under NaCl, mannitol and PEG treatments. Also, the expression of PtNADP-ME2 and PtNADP-ME3 increased during the course of leaf wounding. Each recombinant PtNADP-ME proteins were expressed and purified from Escherichia coli, respectively. Coomassie brilliant blue and NADP-ME activity staining on native polyacrylamide gels showed different oligomeric states of the recombinant PtNADP-MEs in vitro. Noticeably, the cytosolic PtNADP-ME2 aggregates as octamers and hexadecamers while the plastidic PtNADP-ME4 resembles hexamers and octamers. The four PtNADP-ME proteins except for PtNADP-ME1 have high activities on native polyacrylamide gels including different forms for PtNADP-ME2 (octamers and hexadecamers) or for PtNADP-ME4 (hexamers and octamers). High concentrations of NADP substrate decreased the activities of all PtNADP-MEs slightly, while the malate had no effect on them. The kinetic parameters (V (max), K (m), K (cat), and K (cat)/K (m)) of each isoforms were summarized. Our data show the different effects of metabolites (influx into tricarboxylic acid cycle or Calvin cycle) on the activity of the individual PtNADP-ME in vitro. According to phylogenetic analysis, five PtNADP-MEs are clustered into cytosolic dicot, plastidic dicot, and monocot and dicot cytosolic groups in a phylogenetic tree. These results suggest that woody Populus NADP-ME family have diverse properties, and possible roles are discussed.

DOI: 10.1007/s11033-012-2182-y
PubMed: 23096088


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the NADP-malic enzymes in the woody plant Populus trichocarpa.</title>
<author>
<name sortKey="Yu, Qiguo" sort="Yu, Qiguo" uniqKey="Yu Q" first="Qiguo" last="Yu">Qiguo Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jinwen" sort="Liu, Jinwen" uniqKey="Liu J" first="Jinwen" last="Liu">Jinwen Liu</name>
</author>
<author>
<name sortKey="Wang, Zhifeng" sort="Wang, Zhifeng" uniqKey="Wang Z" first="Zhifeng" last="Wang">Zhifeng Wang</name>
</author>
<author>
<name sortKey="Nai, Jiefei" sort="Nai, Jiefei" uniqKey="Nai J" first="Jiefei" last="Nai">Jiefei Nai</name>
</author>
<author>
<name sortKey="Lu, Mengyan" sort="Lu, Mengyan" uniqKey="Lu M" first="Mengyan" last="Lü">Mengyan Lü</name>
</author>
<author>
<name sortKey="Zhou, Xiying" sort="Zhou, Xiying" uniqKey="Zhou X" first="Xiying" last="Zhou">Xiying Zhou</name>
</author>
<author>
<name sortKey="Cheng, Yuxiang" sort="Cheng, Yuxiang" uniqKey="Cheng Y" first="Yuxiang" last="Cheng">Yuxiang Cheng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23096088</idno>
<idno type="pmid">23096088</idno>
<idno type="doi">10.1007/s11033-012-2182-y</idno>
<idno type="wicri:Area/Main/Corpus">002834</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002834</idno>
<idno type="wicri:Area/Main/Curation">002834</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002834</idno>
<idno type="wicri:Area/Main/Exploration">002834</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the NADP-malic enzymes in the woody plant Populus trichocarpa.</title>
<author>
<name sortKey="Yu, Qiguo" sort="Yu, Qiguo" uniqKey="Yu Q" first="Qiguo" last="Yu">Qiguo Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jinwen" sort="Liu, Jinwen" uniqKey="Liu J" first="Jinwen" last="Liu">Jinwen Liu</name>
</author>
<author>
<name sortKey="Wang, Zhifeng" sort="Wang, Zhifeng" uniqKey="Wang Z" first="Zhifeng" last="Wang">Zhifeng Wang</name>
</author>
<author>
<name sortKey="Nai, Jiefei" sort="Nai, Jiefei" uniqKey="Nai J" first="Jiefei" last="Nai">Jiefei Nai</name>
</author>
<author>
<name sortKey="Lu, Mengyan" sort="Lu, Mengyan" uniqKey="Lu M" first="Mengyan" last="Lü">Mengyan Lü</name>
</author>
<author>
<name sortKey="Zhou, Xiying" sort="Zhou, Xiying" uniqKey="Zhou X" first="Xiying" last="Zhou">Xiying Zhou</name>
</author>
<author>
<name sortKey="Cheng, Yuxiang" sort="Cheng, Yuxiang" uniqKey="Cheng Y" first="Yuxiang" last="Cheng">Yuxiang Cheng</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology reports</title>
<idno type="eISSN">1573-4978</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Escherichia coli (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Malate Dehydrogenase (NADP+) (biosynthesis)</term>
<term>Malate Dehydrogenase (NADP+) (chemistry)</term>
<term>Malate Dehydrogenase (NADP+) (genetics)</term>
<term>Malates (chemistry)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (biosynthesis)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Recombinant Proteins (biosynthesis)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Salt Tolerance (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Escherichia coli (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Malate dehydrogenase (NADP+) (biosynthèse)</term>
<term>Malate dehydrogenase (NADP+) (composition chimique)</term>
<term>Malate dehydrogenase (NADP+) (génétique)</term>
<term>Malates (composition chimique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines recombinantes (biosynthèse)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines végétales (biosynthèse)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Tolérance au sel (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Malate Dehydrogenase (NADP+)</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Malate Dehydrogenase (NADP+)</term>
<term>Malates</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Malate Dehydrogenase (NADP+)</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Malate dehydrogenase (NADP+)</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Malate dehydrogenase (NADP+)</term>
<term>Malates</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Malate dehydrogenase (NADP+)</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Escherichia coli</term>
<term>Evolution, Molecular</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Phylogeny</term>
<term>Salt Tolerance</term>
<term>Sequence Analysis, DNA</term>
<term>Sequence Homology, Amino Acid</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Escherichia coli</term>
<term>Expression des gènes</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Stress physiologique</term>
<term>Tolérance au sel</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant NADP-malic enzyme (NADP-ME, EC 1.1.1.40) participates in a large number of metabolic pathways, but little is known about the NADP-ME family in woody plants or trees. Here, we characterized the tree Populus trichocarpa NADP-ME (PtNADP-ME) family and the properties of the family members. Five NADP-ME genes (PtNADP-ME1-PtNADP-ME5) were found in the genome of Populus. Semi-quantitative RT-PCR analysis show that the transcription levels of PtNADP-ME1 in lignified stems and roots are clearly higher than in other tissues, and PtNADP-ME2, PtNADP-ME3, PtNADP-ME4 and PtNADP-ME5 are broadly expressed in various tissues. PtNADP-ME gene expression was found to respond to salt and osmotic stresses, and NaCl salts upregulated the transcripts of putative plastidic ones (PtNADP-ME4 and PtNADP-ME5) significantly. Further, the NADP-ME activities of Populus seedlings increased at least two-fold under NaCl, mannitol and PEG treatments. Also, the expression of PtNADP-ME2 and PtNADP-ME3 increased during the course of leaf wounding. Each recombinant PtNADP-ME proteins were expressed and purified from Escherichia coli, respectively. Coomassie brilliant blue and NADP-ME activity staining on native polyacrylamide gels showed different oligomeric states of the recombinant PtNADP-MEs in vitro. Noticeably, the cytosolic PtNADP-ME2 aggregates as octamers and hexadecamers while the plastidic PtNADP-ME4 resembles hexamers and octamers. The four PtNADP-ME proteins except for PtNADP-ME1 have high activities on native polyacrylamide gels including different forms for PtNADP-ME2 (octamers and hexadecamers) or for PtNADP-ME4 (hexamers and octamers). High concentrations of NADP substrate decreased the activities of all PtNADP-MEs slightly, while the malate had no effect on them. The kinetic parameters (V (max), K (m), K (cat), and K (cat)/K (m)) of each isoforms were summarized. Our data show the different effects of metabolites (influx into tricarboxylic acid cycle or Calvin cycle) on the activity of the individual PtNADP-ME in vitro. According to phylogenetic analysis, five PtNADP-MEs are clustered into cytosolic dicot, plastidic dicot, and monocot and dicot cytosolic groups in a phylogenetic tree. These results suggest that woody Populus NADP-ME family have diverse properties, and possible roles are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23096088</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4978</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology reports</Title>
<ISOAbbreviation>Mol Biol Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the NADP-malic enzymes in the woody plant Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>1385-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11033-012-2182-y</ELocationID>
<Abstract>
<AbstractText>Plant NADP-malic enzyme (NADP-ME, EC 1.1.1.40) participates in a large number of metabolic pathways, but little is known about the NADP-ME family in woody plants or trees. Here, we characterized the tree Populus trichocarpa NADP-ME (PtNADP-ME) family and the properties of the family members. Five NADP-ME genes (PtNADP-ME1-PtNADP-ME5) were found in the genome of Populus. Semi-quantitative RT-PCR analysis show that the transcription levels of PtNADP-ME1 in lignified stems and roots are clearly higher than in other tissues, and PtNADP-ME2, PtNADP-ME3, PtNADP-ME4 and PtNADP-ME5 are broadly expressed in various tissues. PtNADP-ME gene expression was found to respond to salt and osmotic stresses, and NaCl salts upregulated the transcripts of putative plastidic ones (PtNADP-ME4 and PtNADP-ME5) significantly. Further, the NADP-ME activities of Populus seedlings increased at least two-fold under NaCl, mannitol and PEG treatments. Also, the expression of PtNADP-ME2 and PtNADP-ME3 increased during the course of leaf wounding. Each recombinant PtNADP-ME proteins were expressed and purified from Escherichia coli, respectively. Coomassie brilliant blue and NADP-ME activity staining on native polyacrylamide gels showed different oligomeric states of the recombinant PtNADP-MEs in vitro. Noticeably, the cytosolic PtNADP-ME2 aggregates as octamers and hexadecamers while the plastidic PtNADP-ME4 resembles hexamers and octamers. The four PtNADP-ME proteins except for PtNADP-ME1 have high activities on native polyacrylamide gels including different forms for PtNADP-ME2 (octamers and hexadecamers) or for PtNADP-ME4 (hexamers and octamers). High concentrations of NADP substrate decreased the activities of all PtNADP-MEs slightly, while the malate had no effect on them. The kinetic parameters (V (max), K (m), K (cat), and K (cat)/K (m)) of each isoforms were summarized. Our data show the different effects of metabolites (influx into tricarboxylic acid cycle or Calvin cycle) on the activity of the individual PtNADP-ME in vitro. According to phylogenetic analysis, five PtNADP-MEs are clustered into cytosolic dicot, plastidic dicot, and monocot and dicot cytosolic groups in a phylogenetic tree. These results suggest that woody Populus NADP-ME family have diverse properties, and possible roles are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Qiguo</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jinwen</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhifeng</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nai</LastName>
<ForeName>Jiefei</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName></LastName>
<ForeName>Mengyan</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xiying</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Yuxiang</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Mol Biol Rep</MedlineTA>
<NlmUniqueID>0403234</NlmUniqueID>
<ISSNLinking>0301-4851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008293">Malates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>817L1N4CKP</RegistryNumber>
<NameOfSubstance UI="C030298">malic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.82</RegistryNumber>
<NameOfSubstance UI="D050538">Malate Dehydrogenase (NADP+)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050538" MajorTopicYN="N">Malate Dehydrogenase (NADP+)</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008293" MajorTopicYN="N">Malates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23096088</ArticleId>
<ArticleId IdType="doi">10.1007/s11033-012-2182-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Mar;24(6):965-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8204833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1540-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2009 Jul;332(7):591-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 1999 Feb;48(2-3):200-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10343405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2007 Jul;29(7):1129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17516134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Feb 9;490(1-2):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11172800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Mar;49(3):469-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Mol Biol Int. 1996 Feb;38(2):239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8850519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Nov;50(4-5):635-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 Feb 8;243(1-2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10675616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jul;108(3):949-960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Sep 15;31(6):832-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Nov 11;42(44):12721-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14596586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Jun;67(3):231-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 3;284(27):18096-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Nov;68(4-5):355-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(369):699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11886890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2004 Sep;68(9):1865-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Sep 15;429(2):134-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;71(3):251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 May;64(1-2):49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1992 Jun;31(6):1845-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1368216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1998 Apr 1;9(2):214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9664051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2007 Oct;94(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17638114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):39-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 Jan 15;349(2):290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9448717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2006 Jan;45(1):200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16290176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 18;278(16):13757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12562758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cheng, Yuxiang" sort="Cheng, Yuxiang" uniqKey="Cheng Y" first="Yuxiang" last="Cheng">Yuxiang Cheng</name>
<name sortKey="Liu, Jinwen" sort="Liu, Jinwen" uniqKey="Liu J" first="Jinwen" last="Liu">Jinwen Liu</name>
<name sortKey="Lu, Mengyan" sort="Lu, Mengyan" uniqKey="Lu M" first="Mengyan" last="Lü">Mengyan Lü</name>
<name sortKey="Nai, Jiefei" sort="Nai, Jiefei" uniqKey="Nai J" first="Jiefei" last="Nai">Jiefei Nai</name>
<name sortKey="Wang, Zhifeng" sort="Wang, Zhifeng" uniqKey="Wang Z" first="Zhifeng" last="Wang">Zhifeng Wang</name>
<name sortKey="Zhou, Xiying" sort="Zhou, Xiying" uniqKey="Zhou X" first="Xiying" last="Zhou">Xiying Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yu, Qiguo" sort="Yu, Qiguo" uniqKey="Yu Q" first="Qiguo" last="Yu">Qiguo Yu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002763 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002763 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23096088
   |texte=   Characterization of the NADP-malic enzymes in the woody plant Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23096088" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020